Product Specifications

ColdQuanta

Atom Chip Driver

Parameter	**Symbol**	**Conditions**	**Min**	**Typ**	**Max**	**Unit**
Output Current¹ | \(I_0 \) | \(0 < R_{\text{LOAD}} < 0.5 \, \Omega \)
\(0.5 < R_{\text{LOAD}} < 1 \, \Omega \) | -5 | +5 | -3 | +3 | A | A
Voltage Input Range
Differential | \(V_I \)
Common-Mode | \(V_{CM} \) | -5 | +5 | -5 | +5 | V | V
Input Impedance
Differential
Common-Mode | \(Z_i \)
\(Z_{CM1}, Z_{CM2} \) | DC Resistance | DC Resistance | 9.99 | 20 | 10.1 | MΩ | MΩ
Accuracy
Zero-Point Offset
Slope | \(V_i = 0 \) | -50 | 0.1 | 50 | 1.001 | % | µA | A/V
Current Monitor
Slope
Bandwidth² | | 0.99 | 1.00 | 1.01 | | V/A | kHz
eFuse³
Charge Time Constant
Decay Time Constant
Trip Voltage | \(\tau_C \)
\(\tau_d \) | Set internally | 0.1 | 0.1 | 10.1 | 10.1 | s | s | s | V
Dynamic Performance⁴
Full Power Bandwidth (-3 dB)
Step Response⁵ | \(R_{\text{LOAD}} = 0.5 \, \Omega \)
\(R_{\text{LOAD}} = 0.5 \, \Omega \) | 47 | 5 | 95 | kHz | µs
Total Harmonic Distortion (THD)
\(f = 1 \, \text{kHz} \)
\(f = 5 \, \text{kHz} \)
\(f = 10 \, \text{kHz} \)
\(f = 30 \, \text{kHz} \) | \(R_{\text{LOAD}} = 0.1 \, \Omega \) | 0.04% | 0.4% | 1.0% | | |
Common Mode
Rejection Ratio (CMRR)
\(f = 100 \, \text{Hz} \)
\(f = 1 \, \text{kHz} \)
\(f = 10 \, \text{kHz} \)
\(f = 100 \, \text{kHz} \) | \(Z_0 = 100 \, \Omega \) | 96 | 95 | 82 | 60 | dB
AC Power Requirements
Voltage
Frequency | | 110 | 47 | 240 | 63 | VAC | Hz
Physical Dimensions
Weight | \(h \times w \times d \)
\(h \times w \times d \) | 3.47 \times 8.37 \times 16
8.7 \times 21.3 \times 40.6 | 10 | 4.54 | inches | cm | lbs | kg

¹ColdQuanta recommends selecting the lower limit of the indicated range for the load resistance.
²For full power bandwidth, \(R_{\text{LOAD}} \) is typically 0.5 Ω.
³ColdQuanta recommends selecting 24 V DC for the fuse.
⁴50 Ω output impedance.
⁵Step response specified for 47 kHz and 47 kHz step input.